Skip to main content

What is the principle operation of a boiler?

Boiler operation


Boiler working procedure:




The boiler is supplied with water by a feed pump.
Water enters the boiler through a feed check valve. When the water reaches normal water level which is approximately the middle of the water gauge glasses, the feed pump is stopped by the dual control.

The burner is bolted to the hinged front door. Air required for combustion is provided by a forced draught fan which is integral with the burner unit.

The furnace receives heat radiant from the flame and the hot gases from the flame give up heat to tubes in the second pass as they travel to the front chamber. Gases turn into front chamber and give up more heat to the tubes in the third pass as they travel to the rear chamber. The gases leave the boiler by the chimney at the top of the rear chamber.


As the steam pressure rises the pressure has been shown in pressure gauge. When the pressure is sufficiently high the main stop valve can be opened to allow steam to pass to the process or heating system.

When the steam leaves the boiler the water level will drop until it reaches a point which is equally 12.5 mm = ½ inches below the normal level. The dual control will start the feed pump and more water will be fed into the boiler.

Two pressure switches are fitted to the boiler one acts as a pressure limit control and other is pressure control. The pressure control will be a high or low pressure stat in the case of high or low burners and a modulating pressure control in the case of modulating burners, which controls the firing rate of the burners. Which control controls the firing rate of the burner.



When the boiler pressure reaches the maximum required the limit pressure state shut down the boiler. The burner will restart automatically when the pressure falls to a preset poijnt bellow the maximum.
One should limit the pressure state fail to stop the burner, the safety valve will lift the excess pressure will escape to atmosphere, thus preventing any further rise in boiler pressure.


One must follow this caution
One must be checked the setting of the safety valve prior to dispatched as manufacturer recommendation.
If necessary the valve should be adjusted during commissioning. The set pressure should not be altered except by a suitably qualified person, who is also able to fully assess the consequences of carrying out such an alternation.

The safety valve is provided with easing gear for test purposes and supplied with a padlock to prevent unauthorized interference. The key should be retained in a secure place under the supervision of a qualified person.
A steam accumulation test at the maximum evaporative capacity with the stop valve  closed should be performed in the presence of the inspecting authority before the boiler is put into normal operation.

If for any reason water is not supplied to the boiler and the water level falls to a point  about 50 mm = 2 inches below the normal level the dual fuel control stop the burner and activate the low water alarm. Provided the water level is restored before reaching the extra lowest water level the alarm will stop and the burner will restart automatically.

If one has been seen continuously water level fall to reaches 75 mm or 3 inches below the normal level , the over riding control will activate the extra lowest water alarm rending the burner in a lockout condition.


If one has been shown let water out of the boiler, this can be done by opening the blow down valve at the rear of the boiler.

Comments

Popular posts from this blog

How to Calculate Heat Rate of Generator Engine?

Types of Power Plant (Technology) Natural Gas Based power plant technology Diesel power plant technology Heat Rate of Engine= Fuel Flow or Fuel burned * Fuel Heating Value / Power Output 1 Liter Diesel = 0.85 Kg Example: Heat Rate of Diesel Generator at 100% Load Engine Model- 2506A-E15TAG2 Engine Capacity=400 eKW Fuel Consumption=84 L = 71.4 Kg Electrical Energy Output = 400 KW Heating Value of Diesel = 42.5 MJ/Kg Heat Rate of Engine= Fuel Flow or Fuel burned * Fuel Heating Value / Power          Output Heat Rate of Engine = 71.4 Kg * 42.5 MJ/Kg /400KW   Heat Rate of Engine =7.58 MJ/KWH Heat Rate of Gas Generator at 100% Load Engine Model- VHP5904LTD Engine Capacity= 900 eKW Fuel Consumption= 271 Nm 3 Electrical Energy Output= 900 KW Fuel Consumption= 0.28 Nm3/KWH Heating Value of Natural Gas= 35.22 MJ/ Nm 3 Heat Rate of Engine= Fuel Flow or Fuel burned * Fue...

Packing, Seals and Gaskets

Packing, seal and gasket resists the flow of fluid from machinery face, head, joint and machinery gap or clearance. Packing materials: Fiber, asbestos, cotton, synthetic materials, plastic, Teflon, graphite etc. Packing structure: Twisted, Braided and Consolidated. Gasket:             A gasket is a mechanical seal that fills the space between two mating surfaces, generally to prevent leakage from or into the joined objects while under compression. Gaskets allow " less-than-perfect " mating surfaces on machine parts where they can fill irregularities. Gaskets are commonly produced by cutting from sheet materials, such as gasket paper, rubber, silicone, metal, cork, felt, neoprene, nitrile rubber, fiberglass, or a plastic polymer (such as polychlorotrifluoroethylene)                        ...

what is the difference between long shunt and short shunt dc generator?

How do they differ from normal generator?    Draw their V-I characteristics and explain them? In short shunt connection the shunt field is connected directly across the armature terminals and the armature connection equals the sum of the shunt field current plus the load current . In this instance the load current flow s through the series field winding so that the load current and series field current are one and same.              In long shunt connection the voltage across the shunt field is the same as the terminal voltage of the generator and current in the armature will be the current in the series field. The armature current equals the shunt field current plus the load current.   A shunt generator has the field circuit connected directly across the armature. As more devices connected in parallel the load on the generator increases that the generator current increases which...

Why a dc generator fails to build up voltage?

How can the problem be remedied : No residual magnetism, reversed field connection and high resistance of field circuit are responsible for the failure of build up process of a dc generator. The factors are explained below: No residual magnetism:    For the starting build up process requires some residual magnetism in the magnetic circuit then no voltage will be generated that can produce current flow through field circuit. Reversed field connection:    The voltage induced inside the coil of field circuit due to residual magnetism that can permit the flow of current. For the following direction of this flux will be created and the direction of this flux will be same direction as the residual flux. If the field connections are reversed the lines of flux produced by current flow will oppose the residual flux, as a result generate voltage will decrease rather than increase. So voltage build up process failed. Field circuit resistance ...

Why Coal is limited for world people?

Coal is a natural source of energy. But has limitation in earth. Coal is made from based on carbon. And other metals also contain such as H (hydrogen), S (Sulfur), N (nitrogen), O(oxygen). Coal is harder than any other metal. Coal mainly found in Soil, By using coal and give high pressure people can produce high temperature which is used by people in various ways such as produce electricity. Coal is largest natural energy in world anthropogenic. By using coal there have create much amount of CO 2 (carbon die oxide) which more bad for our environment and polluted our air. By using the amount of pollution is more than using natural gas in produce of electricity. When produce 1 MH (Mega watt hour) produce electricity carbon die oxide produce about two thousands pounds by using coal. And when also same amount of electricity produce by using natural gas carbon die oxide produce one thousand pounds. For reducing the emission of CO ...

Definition of Friction and Brake

Friction is main bad effect of a motor. Friction reduce a motor efficiency. Friction mainly create in a motor for it’s corrosion or speed ratio on spin. In a motor flywheel adjusted in drive wheel. In a gear ratio it mainly depends on gear and flywheel transfer energy on drive wheel. In a car or heavy load carrier vehicle used spring for reduce vibration and friction reduce generally use oil especially used in lubrication. For friction reduce one should firstly should select a metal which is help to reduce corrosion that’s means high resistance corrosion. Brake is also more important issue for a vehicle for it speed is slow down. There are three types of   brake such as electromagnetic, disc and drum brake. Kinetic energy change to heat energy a vehicle speed reduce. Most of the car and vehicle use hydraulic brake which based in 6 steps and depends on 6 parts. These six parts are valve, road wheel, pedal, cylinder and boost. Electromagnetic brake is more popular for it’s more fa...

Mechanism of Solar Collector for Flat Plate

                             Solar collector main theme is collect radiation from sun and it transfer to heat energy or electricity to other storage  such as a battery. One can use various types of solar collector such as a disk, flat and tube in thermally. In solar collector radiation absorb but the amount of supply heat is greater than absorb of heat. Radiation is mainly depends on environment, place, temperature, sunlight and air. For running a turbine solar collector used for initially running. If a collector any one compare concentrating solar and non concentrating solar collector  there have basic difference such as concentrating solar has more benefits because it received radiation in whole area. In 1950 two person whore they Hottel & Whillier give a new theme to us for flat plate solar collector which has more benefit. A flat plate solar collector has some gradient such as i...

Therbligs and Basic 17 motion name of therblig

Therbligs : A graphical representation of the co-ordinated activities of an operators body members. These activities ar described in terms of basic or fundamental motions known as therbligs.                                         At the time Frank Gilbreth was doing his work in the field of motion study, he also concluded that any manual activity could be described in terms of 17 fundamental motions. This comparable to our being able to describe every word in the English language in terms of some of the 26 letters of the alphabet. Each of these fundamental motions is called a Therblig. Basic 17 motion name of Therblig : Name of Therblig Letter abbreviation Search Select Grasp Transport empty Transport loaded ...

Which type of Battery connection Series or Parallel Connection is used for Diesel Generator?

Diesel Generator Battery Connection Batteries can emit explosive gases.     To reduce the possibility of personal injury, always ventilate the compartment before servicing the batteries. To remove the possibility of arching, remove the negative battery cable is first and attach the negative battery last. When using jumper cables to start the engine make sure to connect the cables in parallel Positive to positive and negative to negative. When using external electrical source to start the engine, turn the disconnect switch to the OFF position. Remove the key before attaching the jumper cables. To avoid damage to engine parts do not connect jumper starting or battery charging cable to any fuel system or electronic component. Battery Parallel Connection: The accompanying illustration shows a typical parallel battery connection. This arrangement doubles the cranking amperage. Battery Series Connection: This illustration sh...

Various Methods of Drawing Flow Nets

  1.       Hydraulic models: a.        Streamlines can be traced by injecting a dye in a seepage model or Heleshaw apparatus. b.       They by drawing equipotential lines the flow net is completed. 2.       Analytical Method: a.        It is only applied to problems with simple and ideal boundaries conditions. b.       The equation corresponding curve ǿ and Ѱ are first obtained and the same are plotted to give the flow net pattern for the flow of fluid between the given boundary shape. 3.       Electrical Analogy Method: This method based on the fact that the flow of fluids and flow of electricity through a conductor are analogus. These two systems are similar in the respect that electric potential is analogus to the velocity potential. The electric current is analogus to...